# Fluid Phase Equilibria of Ethane + 2-Methylnaphthalene

# Theo W. de Loos,\* Marcel Dartee, and Jakob de Swaan Arons

Laboratory of Applied Thermodynamics and Phase Equilibria, Faculty of Chemical Engineering and Materials Science, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

Phase boundary pressures between regions of one and two fluid phases have been measured as a function of temperature for 12 mixtures of ethane + 2-methylnaphthalene in the temperature range 278 K to 363 K by means of a synthetic method.

## Introduction

Supercritical fluids like carbon dioxide or ethane are potential solvents for the separation of alkanes and aromatic compounds using supercritical extraction (de Haan, 1991). For an economically attractive design of such a separation process the phase behavior of the mixtures involved has to be known. The separation of mixtures of hexadecane and 2-methylnaphthalene using supercritical ethane is one of the separations that was investigated at the Delft University of Technology. The phase behavior of the system ethane + hexadecane was known from the literature (de Goede et al., 1989). For the system ethane + 2-methylnaphthalene only a limited data set of Estrera et al. (1987) is available.

Estrera et al. (1987) showed that in a *p*, *T* projection, the system ethane + 2-methylnaphthalene is characterized by the occurrence of a three-phase curve liquid–liquid–vapor, which ends at a high temperature (313 K) in an upper critical end point, where the ethane-rich liquid phase and the vapor phase become identical. At a low temperature (278.88 K) this curve ends in a quadruple point solid 2-methylnaphthalene–liquid–liquid–vapor, which is the point of intersection of the liquid–liquid–vapor curve and another three-phase curve, the solid 2-methylnaphthalene–liquid–liquid–vapor curve ends at a high temperature in the triple point of pure 2-methylnaphthalene.

Estrera et al. also measured two bubble-point isotherms at 298.15 K and 318.15 K, 2-methylnaphthalene mole fractions of 0.45 to 0.9 and pressures up to 5.5 MPa. In this paper we present fluid phase equilibrium data for this system over a wider range of temperature, composition, and pressure.

#### **Experimental Section**

**Method.** The measurements were carried out in a glass tube apparatus for use with pressures up to 15 MPa and temperatures up to 473 K. With this so-called Cailletet apparatus phase vanishing points, like dew points and bubble points, of mixtures of known composition can be measured visually. A detailed description of the apparatus and the procedure is given by de Loos et al. (1986).

**Materials.** The mole fraction purity of the ethane used (AGA) was greater than 0.999 95. The 2-methylnaphthalene used in this study was obtained from Merck with a minimum purity of 98 mol % and was purified further by recrystallization from ethanol (Feldman and Orchin, 1952). GC analyses showed that the final product had a minimum purity of 99.2 mol %.

**Results.** The *p*, *T* behavior in the temperature range of 278 K to 363 K of the 12 binary (1 - x) ethane +



**Figure 1.** Fluid phase equilibria of  $\{(1 - x)\text{ethane} + x2\text{-methyl-naphthalene}\}$ : phase boundary pressure as a function of temperature for indicated mole fraction *x*. Symbols, experimental data: (+) x = 0.057; ( $\triangle$ ) x = 0.087; ( $\bigcirc$ ) x = 0.125; (+) x = 0.188; ( $\blacktriangle$ ) x = 0.293; ( $\bigcirc$ ) x = 0.345; ( $\bigcirc$ ) x = 0.378; ( $\diamond$ ) x = 0.490; ( $\square$ ) x = 0.584; ( $\checkmark$ ) x = 0.696; ( $\diamondsuit$ ) x = 0.800; ( $\blacksquare$ ) x = 0.905. Full curves: best fit to the experimental data. (---) L<sub>2</sub>L<sub>1</sub>V curve (Estrera et al., 1987). (---) SL<sub>2</sub>V curve (Estrera et al., 1987).

x2-methylnaphthalene mixtures investigated is given in Table 1 and plotted in Figure 1 together with the liquidliquid-vapor curve and solid 2-methylnaphthalene-liquidvapor curve, as measured by Estrera et al. (1987). *x* is the 2-methylnaphthalene mole fraction. The full curves are third-order or fourth-order polynomials fitted to the data. The data for x = 0.057, x = 0.087, and x = 0.125 represent at low temperature the transition  $L_2 + L_1 \rightarrow L_1$  and at high temperature the transition  $L_2 + V \rightarrow V$ .  $L_2$  is richer in 2-methylnaphthalene and has a higher density than L<sub>1</sub>. For x = 0.293, x = 0.345, and x = 0.378 the transition is at low temperature  $L_2 + L_1 \rightarrow L_2$  and at high temperature  $L_2$  $+ V \rightarrow L_2$ . For x = 0.188 the meniscus disappears almost in the middle over the whole temperature range, so the isopleth for this composition more or less represents the critical curve. For x = 0.490 and higher the transitions are always  $L_2 + V \rightarrow L_2$ .

From the polynomials fitted to the *p*,*T* data isothermal *p*,*x* sections were obtained by interpolation. Figure 2 shows

S0021-9568(96)00157-4 CCC: \$12.00

© 1996 American Chemical Society

Table 1. Fluid Phase Equilibria of  $\{(1 - x)Ethane + x 2:Methylnaphthalene\}$ : Phase Boundary Pressure p as a Function of Temperature T for Given Mole Fraction x

| unction          | or rempe      | i acai e i i | or arrent      | noie i iuc       |               |
|------------------|---------------|--------------|----------------|------------------|---------------|
| <i>T</i> /K      | <i>p</i> /MPa | <i>T</i> /K  | <i>p</i> /MPa  | <i>T</i> /K      | <i>p</i> /MPa |
|                  |               | x = 0        | 0.057          |                  |               |
| 278 30           | 3 602         | 212 22       | 8 253          | 338 94           | 11 473        |
| 210.00           | 3.032         | 010.17       | 0.200          | 040.07           | 10.040        |
| 283.23           | 4.407         | 318.17       | 8.903          | 343.27           | 12.048        |
| 288.24           | 4.979         | 323.13       | 9.588          | 348.26           | 12.638        |
| 293.26           | 5.563         | 328.15       | 10.228         | 353.31           | 13.163        |
| 303.27           | 6.233         | 333.20       | 10.868         | 358.31           | 13.668        |
| 298 28           | 6 864         | 338 20       | 11 468         | 363 44           | 14 168        |
| 200.20           | 7 500         | 000.20       | 11.400         | 000.11           | 14.100        |
|                  |               |              |                |                  |               |
|                  |               | x = 0        | 0.087          |                  |               |
| 278.26           | 7.078         | 298.24       | 8.213          | 333.19           | 12,138        |
| 283 25           | 7 178         | 303.21       | 8 728          | 338 91           | 12.100        |
| 200.20           | 7.170         | 010.17       | 0.720          | 040.17           | 12.710        |
| 288.29           | 7.438         | 313.17       | 9.813          | 343.17           | 13.253        |
| 293.20           | 7.763         | 323.15       | 10.973         | 348.13           | 13.778        |
| x = 0.125        |               |              |                |                  |               |
| 978 39           | 0 453         | 303.26       | 0.888          | 328 25           | 12 157        |
| 210.32           | 9.433         | 303.20       | 9.000          | 328.23           | 12.137        |
| 283.32           | 9.258         | 313.22       | 10.688         | 333.30           | 12.672        |
| 288.27           | 9.228         | 323.25       | 11.647         | 338.30           | 13.192        |
| 293.25           | 9.348         |              |                |                  |               |
| v = 0.188        |               |              |                |                  |               |
| 070.04           | 10.000        | x - 0        | 0.075          | 000 10           | 11 715        |
| 278.34           | 10.093        | 298.28       | 9.875          | 323.12           | 11.715        |
| 283.26           | 9.810         | 293.23       | 10.229         | 333.09           | 12.755        |
| 288.31           | 9.670         | 313.19       | 10.869         | 343.08           | 13.770        |
| 293.35           | 9.713         |              |                |                  |               |
| 0.000            |               |              |                |                  |               |
|                  |               | X = 0        | 0.293          |                  |               |
| 278.35           | 8.923         | 298.26       | 8.688          | 318.11           | 10.128        |
| 283.38           | 8.618         | 303.22       | 8.958          | 323.04           | 10.603        |
| 293.25           | 8.518         | 308.21       | 9.293          | 328.08           | 11.102        |
| 298 26           | 8 523         | 313 13       | 9 688          | 333.05           | 11 602        |
| 200.20           | 0.020         | 010.10       | 0.000          | 000.00           | 11.002        |
| x = 0.345        |               |              |                |                  |               |
| 278.45           | 7.108         | 303.18       | 7.434          | 328.00           | 9.864         |
| 283.32           | 6.728         | 308.11       | 7.844          | 332.97           | 10.409        |
| 288.32           | 6.698         | 313.15       | 8.309          | 337.93           | 10.949        |
| 293 30           | 6 868         | 318.07       | 8 804          | 3/2 91           | 11 504        |
| 200.00           | 7 104         | 222.05       | 0.004          | 259 75           | 19 520        |
| 230.24           | 7.104         | 323.05       | 9.329          | 332.73           | 12.555        |
| x = 0.378        |               |              |                |                  |               |
| 283.38           | 4.924         | 308.17       | 6.575          | 332.85           | 9.474         |
| 288 26           | 5 039         | 312 99       | 7 1/9          | 3/3 18           | 10 664        |
| 202.20           | 5 975         | 217 09       | 7 670          | 252 92           | 11 794        |
| 293.29           | 5.275         | 317.90       | 7.079          | 352.03           | 11.724        |
| 298.28           | 5.629         | 323.04       | 8.279          | 357.66           | 12.234        |
| 303.22           | 6.070         | 328.02       | 8.904          | 362.65           | 12.739        |
| v = 0.400        |               |              |                |                  |               |
| 283 25           | 2 762         | 313 20       | 1 962          | 343.26           | 7 002         |
| 200.20           | 2.702         | 000 10       | 4.302          | 050.00           | 1.302         |
| 200.29           | 3.073         | 323.19       | 5.892          | 333.29           | 0.00/         |
| 293.26           | 3.398         | 333.25       | 6.868          | 363.42           | 9.812         |
| 303.26           | 4.127         |              |                |                  |               |
| v = 0.584        |               |              |                |                  |               |
| 982 21           | 2 169         | 312.97       | / 10/          | 2/12 91          | 6 200         |
| 203.31           | 2.400         | 313.27       | 4.194          | 070.04           | 0.209         |
| 293.23           | 2.978         | 323.25       | 4.869          | 353.24           | 7.009         |
| 303.28           | 3.563         | 333.22       | 5.564          | 363.24           | 7.714         |
| x = 0.696        |               |              |                |                  |               |
| 200.28           | 9 914         | 212 20       | 2 164          | 242 97           | 4 502         |
| 290.28           | 2.214         | 313.20       | 3.104          | 343.87           | 4.595         |
| 293.27           | 2.333         | 323.18       | 3.629          | 353.37           | 5.068         |
| 303.28           | 2.729         | 333.21       | 4.103          | 363.26           | 5.538         |
| r = 0.800        |               |              |                |                  |               |
| 208 01           | 1 669         | 393 10       | 2 208          | 353 94           | 3 1/2         |
| ~30.31<br>202 01 | 1 770         | 000 10       | 6.630<br>0 570 | 000.44           | 0.140         |
| 303.21           | 1.//8         | 333.16       | 2.5/3          | 363.19           | 3.433         |
| 313.19           | 2.029         | 343.13       | 2.848          |                  |               |
| x = 0.905        |               |              |                |                  |               |
| 303 33           | 0 000         | 222.92       | 1 902          | 353 96           | 1 550         |
| 000.66<br>010 10 | 1 090         | 000.60       | 1.633          | 000.60<br>000.01 | 1.000         |
| 313.19           | 1.029         | 343.20       | 1.428          | 303.31           | 1.693         |
| 323.25           | 1.163         |              |                |                  |               |
|                  |               |              |                |                  |               |

these sections at (283.15, 303.15, 323.15, and 343.15) K. At 283.15 K and 303.15 K also the composition of the  $L_2$  and the  $L_1$  phase on the liquid–liquid–vapor curve as found by Estrera et al. (1987) is plotted. At these temperatures a  $L_2 + L_1$  equilibrium is found at high pressure and at low pressure a  $L_2 + V$  equilibrium. At low mole fractions



**Figure 2.** Fluid phase equilibria of  $\{(1 - x)\text{ethane} + x2\text{-methyl-naphthalene}\}$ : isothermal *p*,*x* data. Symbols, interpolated experimental data: ( $\triangle$ ) *T* = 283.15 K; (+) *T* = 303.15 K; (•) *T* = 323.15 K; (•) *T* = 343.15 K. Full curves: best fit to experimental data. Symbols, data from L<sub>2</sub>L<sub>1</sub>V equilibria (Estrera et al., 1987): ( $\Box$ ) *T* = 283.15 K; (•) *T* = 303.15 K.



**Figure 3.** Fluid phase equilibria of  $\{(1 - x)\text{ethane} + x2\text{-methyl-naphthalene}\}$ : isothermal bubble point data. Symbols, interpolated experimental data: (+) T = 298.15 K; ( $\triangle$ ) T = 318.15 K. Full curves: best fit to experimental data. Symbols, data from Estrera et al. (1987): ( $\bigcirc$ ) T = 298.15 K; (+) T = 318.15 K.

and pressures higher than the three-phase pressure also a two-phase equilibrium  $L_1 + V$  should be found, but no data were collected for this equilibrium. At 323.15 K and 343.15 K the curves represent the  $L_2 + V$  equilibrium.

In Figure 3 a comparison is made between the bubble point data as found by Estrera et al. (1987) at 298.15 K

and 318.15 K and our bubble point data. The curves show that there is a small but systematic deviation of our results from the data of Estrera et al.

### **Discussion and Conclusions**

This paper presents fluid phase equilibrium data for the system ethane + 2-methylnaphthalene. The results confirm the occurrence of a liquid-liquid-vapor equilibrium at temperatures lower than 313 K. The three-phase pressure at 293.4 K was found to differ only 0.01 MPa from the three-phase pressure found by Estrera et al. However, at a 2-methylnaphthalene mole fraction higher than 0.45, our bubble points can show deviations up to 0.1 MPa from the data of Estrera et al. (1987).

#### **Literature Cited**

- De Goede, R.; Peters, C. J.; Van der Kooi, H. J.; Lichtenthaler, R. N. Phase Equilibria in Binary Mixtures of Ethane and Hexadecane. Fluid Phase Equilib. **1989**, *50*, 305–314.
- De Haan, A. B. Supercritical Fluid Extraction of Liquid Hydrocarbon
- Johnson, A. D. Supercifical rulid Extraction of Liquid Hydrocarbon Mixtures. Ph.D. Thesis, Delft University of Technology, Delft, 1991.
  De Loos, Th. W.; Van der Kooi, H. J.; Ott, P. L. Vapor-Liquid Critical Curve of the System Ethane + 2-Methylpropane J. Chem. Eng. Data 1986, 31, 166-168.
- Feldman, J.; Orchin, M. Separation of 1- and 2-Methylnaphthalene by Azeotropic Distillation. *Ind. Eng. Chem.* **1952**, *44*, 2909–2914.
- Estrera, S. S.; Arbuckle, M. M.; Luks, K. D. Solubility and Partial Miscibility of Ethane in Certain Hydrocarbon Liquids. Fluid Phase Equilib. 1987, 35, 291-307.

Received for review May 3, 1996. Accepted June 18, 1996.<sup>®</sup>

#### JE9601570

<sup>®</sup> Abstract published in Advance ACS Abstracts, August 1, 1996.